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Abstract

This paper presents a Bayesian spatial method for analysing the site index data from the Missouri Ozark Forest Ecosystem
Project (MOFEP). Based on ecological background and availability, we select three variables, the aspect class, the soil depth and
the land type association as covariates for analysis. To allow great flexibility of the smoothness of the random field, we choose
the Matérn family as the correlation function. We adopt the reference prior as an appropriate prior because there is no previous
knowledge of the parameters in the model. An efficient algorithm based on the generalized Ratio-of-Uniforms method is developed
for the posterior simulation. One advantage of the algorithm is that it generates independent samples from the required posterior
distribution, which is much more efficient for both statistical inference of the parameters and prediction of the site indexes at
unsampled locations. Our results show that the aspect class and the soil depth are both significant while the land type association is
less significant. The model validation is briefly discussed. In addition, our simulation method allows easy realization for computing
quantities from the posterior predictive distributions.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Missouri Ozark Forest Ecosystem Project (MOFEP) is an ongoing, centuries-long experiment that is designed
to monitor and assess the short- and long-term effects of common management practices on Ozark ecosystems. See
Brookshire and Shifley (1997), Shifley and Brookshire (2000) and Shifley and Kabrick (2002). The MOFEP will
provide a comprehensive evaluation of the impacts of operational management practices on a wide array of ecosystem
attributes. The main purpose of this paper is to predict the site index at unmeasured locations.

Site index is a measure of forest productivity based upon the height at a specified base age of dominant or
codominant trees. Height is used because it is correlated to site quality and is not very sensitive to differences in
stand density. In Missouri, a base age of 50 years is used. Most measured trees are not at the base age, so curves are
used to convert heights of tree of any age to the base age height. A compendium of the published site index curves for
eastern half of the United States was presented by Carmean et al. (1989).
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From 1993 and 1996, site index was determined on suitable trees at 648 permanent plots on the nine MOFEP
sites. Trees considered suitable were canopy codominants having good form with no indication that they had been
suppressed and showing the best growth potential. One to five candidate trees selected for site index determination
were sampled outside of the 0.5 acre permanent vegetation plots but within 330 feet of vegetation plots. Candidate
trees were also limited to four species — black oak, scarlet oak, white oak and shortleaf pine because these four
species are most abundant commercial species in the region and reliable site index curves have been developed locally
for them.

For each site index tree, the distance and azimuth from the geo-referenced vegetation plot centre were recorded and
later used to determine the location of each site index tree. Trees were assigned a ranking of their perceived quality
for indicating site index. Tree heights were measured with clinometer to the nearest feet. A single increment core was
extracted at breast height and taken to the lab for age determination. Site index was determined using species, height,
age at diameter beast height (d.b.h.), and published site index equations for species in the Missouri Ozarks. See, for
example, McQuilkin (1974) and Nash (1978).

Since the site index can only be available on some locations, the prediction of the site index at unmeasured locations
is of ecological interest in practice. Recently, Bayesian approach to analysis of spatial data has become of interest,
especially when the main goal is prediction. See Handcock and Stein (1993), De Oliveira et al. (1997) and Ecker and
Gelfand (1997), and to mention just a few. The main advantage of the Bayesian approach is that parameter uncertainty
is fully accounted for when performing prediction and inference, even in small samples.

In this paper, we will propose Bayesian spatial model to achieve this goal. We consider black oak site index on two
of the nine MOFEP sites. However, our proposed method can easily be applied to other species, and other sites at the
MOFEP or elsewhere. Section 2 will deal with how to set up an appropriate Bayesian spatial model. In Section 3, an
efficient algorithm based on the generalized Ratio-of-Uniforms method is developed for the posterior simulation. One
advantage of the algorithm is that it generates independent samples from the required posterior distribution, which is
much more efficient for both statistical inference of the parameters and prediction of the site indexes at unsampled
locations. Model validation will be briefly studied in Section 4. In Section 5, we will discuss spatial prediction of
the site index and concluding remarks will be given in Section 6. The proofs of two main theorems are shown in the
Appendix.

2. The Gaussian model

2.1. Data structure and the likelihood

There are 173 sampled black oaks of high quality as judged by technicians, irregularly located in sites one and two,
see Fig. 1. The location of each site index tree was used to identify geo-referenced environmental characteristics such
as soil type, aspect, land type association, at the location of each site index tree, which will be partly used as covariates
in our model.

We choose the Gaussian process to model our spatial data. Let {Z(s), s ∈ D}, D ⊆ R2, be the random field of
interest. The data consist of n observations Z = (Z(s1), Z(s2), . . . , Z(sn))′ where s1, s2, . . . , sn are known distinct
sampling locations inD. We assume that Z(·) is a Gaussian random field with E{Z(s)} = β0+β1 X1(s)+· · ·+βp X p(s)
and cov{Z(s), Z(u)} = σ 2 Kθ (‖s − u‖), where β = (β0, β1, . . . , βp)

′
∈ Rp+1 are unknown regression parameters,

X1(s), . . . , X p(s) are known location-dependent covariates, σ 2
= var{Z(s)}, and Kθ (‖s − u‖) = corr{Z(s), Z(u)}

is an isotropic correlation function with ‖ · ‖ denoting Euclidean distance, and θ ∈ Θ ⊂ Rc controlling the range of
correlation and the smoothness of the random field. Thus the likelihood function of the model parameters (β, σ 2, θ),
based on the observed data z = (z(s1), . . . , z(sn))′, is given by

L(β, σ 2, θ; z) = (2πσ 2)−n/2
|6θ |

−1/2 exp
{
−

1

2σ 2 (z − Xβ)′6−1
θ (z − Xβ)

}
(1)

where X = (xi j ) is the known n × (p + 1) matrix with its first column as 1 = (1, . . . , 1)′, assumed to have full rank,
and 6θ = (Kθ (‖si − s j‖)), assumed to be positive definite for any θ ∈ Θ .

For our data set,D represents the area of sites one and two, and Z(s) denotes the site index of black oak at location
s. Of 173 sampled black oaks, we choose n = 113 trees for modelling based on three considerations. First, the
distances among 173 points located in sites one and two range from 3.32 m to 3928.96 m. In the spatial setting, if we
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Fig. 1. 173 sampled black oaks on sites one and two of MOFEP study in UTM coordinates: Locations for modelling marked as “·” and those for
model validation marked as “×”.

Table 1
Summary of covariates

Name Symbol Type Categories Values and description

Aspect class X1 (s) Categorical 2 1 — protected
0 — exposed

Soil depth X2 (s) Categorical 2 1 — deep to very deep soil
0 — shallow to moderate deep soil

LTA X3 (s) Categorical 2 1 — OZ9b
0 — OZ9e

add a location that is very close to an existing location, the data from the new location will not add much information
to the inference about the spatial model. Second, if the model contains two very close locations, then the associated
correlation matrix 6θ will be nearly singular, which will result in numerical difficulties for parametric inference with
either the frequentist method or the Bayesian method. Third, if the model has contained enough points, then prediction
at a new spatial location will improve very slowly with increasing the sample size, as mentioned by Banerjee et al.
(2004). For 113 locations chosen, the minimum distance among them is 50 m. We will reserve some of the remaining
60 trees for empirical validation of the resulting predictions.

Covariates were chosen based on availability and ecological background. We selected three variables, the aspect
class, the soil depth and and land type association (LTA), denoted as X1(s), X2(s) and X3(s) respectively. Aspect
classes are described as ‘protected’ if the slope aspect azimuth is within 316-135 degrees, and ‘exposed’ if the
slope aspect azimuth is within 136-315 degrees. There are two land type associations, the Current River Oak-Pine
Woodland/Forest Hills (coded as OZ9b) and the Current River Oak Forest Breaks (coded as OZ9e). See Shifley and
Kabrick (2002) and Nigh and Schroeder (2002) for detail. Soil depth is created by the soil type and categorized into
two classes, deep to very deep soil and shallow to moderate deep soil. See the detail relationship between soil types
and soil characteristics in Kabrick et al. (2000). Table 1 summarizes the covariates in the model.

2.2. Correlation function

The previous subsection did not specify a correlation function for the spatial model. Actually, there are many
correlation functions, such as spherical, power exponential, rational quadratic, that are commonly used in spatial
statistics, see Cressie (1993), Chiles and Delfiner (1999), Stein (1999) and Banerjee et al. (2004), etc. Amongst the
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various families of correlation function which have been proposed, the Matérn family is particularly attractive. Its
algebraic form is given by

Kθ,ν(d) =
1

2ν−1Γ (ν)

(
d

θ

)ν

Kν

(
d

θ

)
, θ > 0, ν > 0, (2)

where θ is the spatial range parameter, which measures how quickly the correlations of the random field decay with
distance, ν is the smoothness parameter, which measures the differentiability of the random field, and Kν(·) is the
modified Bessel function of the second kind and of order ν; see Abramowitz and Stegun (1965) for details on the
behavior of this special function. What makes this family particularly attractive is that the corresponding process
Z(·) is mean-square [ν] − 1 times differentiable where [ν] represents the largest integer less than or equal to ν. So
the Matérn family does allow for considerable flexibility in the smoothness of the random field while keeping the
number of parameters manageable. Furthermore, note that the exponential family is the special case with ν = 1 and
the Gaussian family is the case when ν → ∞.

The Matérn family was strongly recommended by Stein (1999) because there is the parameter ν to control the
smoothness of the random field. We choose this family as the correlation function for our model.

2.3. The prior

The parameters in our model are the regression coefficient β, the variance σ 2, the range parameter θ and the
smoothness parameter ν. The smoothness of a random field plays a critical role in spatial data analysis. However,
there is often no basis for knowing a priori of the degree of some physical process in a random field. Thus, we will not
assign a prior for the smoothness parameter ν and we assume for the moment that it is known. We will discuss how to
estimate the smoothness parameter ν before we make Bayesian inference on the parameters β, σ 2 and θ .

Selection of the prior is based upon previous knowledge of the model parameters. Often, there is little information
available on the model parameters which prompts the use of noninformative priors. In this paper, we consider the
following reference prior for (β, σ 2, θ) developed by Berger et al. (2001),

π(β, σ 2, θ) ∝
π(θ)

σ 2 , β ∈ R p+1, σ 2 > 0, θ > 0, (3)

where

π(θ) ∝

{
tr[W2

θ ] −
1

n − p
(tr[Wθ ])

2
}1/2

, (4)

with

Wθ =
∂6θ

∂θ
6−1

θ P6
θ and P6

θ = I − X(X′6−1
θ X)−1X′6−1

θ . (5)

Here (∂/∂θ)6θ denotes the matrix obtained by differentiating 6θ with respect to θ element by element and I is an
identity matrix of order n.

The reference prior was originally proposed by Bernardo (1979) and it is expected to have a minimal effect on
the posterior inference about the unknown parameters and thus can produce “objective” Bayesian inference. Berger
and Bernardo (1989, 1992) further developed crucial mathematical extensions through Fisher information matrix.
Interested readers may find a nice review article written by Bernardo (2005) and the references therein.

Note that the reference prior (3) is a non-informative and improper prior and the posterior propriety under this prior
has fully been studied by Berger et al. (2001). They prove that for any design matrix X with full rank, the posterior is
always proper.

Remark 1. The prior π(β, σ 2, θ) in (3) with π(θ) = 1 was proposed by Kitanidis (1986) and Handcock and Stein
(1993). However, as shown by Berger et al. (2001), it will result in an improper posterior.
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3. Statistical inference for parameters

3.1. Estimating the smoothness parameter

Before making Bayesian inference on β, σ 2 and θ , the smoothness parameter ν must be estimated.
Because we are now considering the smoothness parameter ν, it is useful to explicitly recognize that the reference

prior was defined with ν considered given, so we now write π(β, σ 2, θ |ν) instead of π(β, σ 2, θ), and π(θ |ν) instead
of π(θ) in this subsection. Although the reference prior (3) is improper, Berger et al. (2001) prove that the marginal
prior π(θ |ν) is proper. This makes it possible to apply the idea in Berger et al. (1998) to estimate the smoothness
parameter ν. The procedure is as follows:

For each ν, the reference prior used is

π(β, σ 2, θ |ν) =
C(ν)π(θ |ν)

σ 2 , (6)

where

C(ν) =
1∫

∞

0 π(θ |ν)dθ
.

Note that computation of C(ν) must be done numerically. We compute C(ν) by the function quad with MATLAB
software. Using this prior (6), we compute the marginal integrated likelihood for each ν as

m(z|ν) =

∫
L(β, σ 2, θ, ν; z)

C(ν)π(θ |ν)

σ 2 dβdσ 2dθ

=

∫
∞

0
L I (θ, ν; z)C(ν)π(θ |ν)dθ

=

∫
∞

0
|6θ,ν |

−1/2
|X′6−1

θ,νX|
−1/2(S2

θ,ν)
−(n−p)/2C(ν)π(θ |ν)dθ (7)

where

L I (θ, ν; z) =

∫
R p+1×(0,+∞)

L(β, σ 2, θ, ν; z)
1

σ 2 dβdσ 2

∝ |6θ,ν |
−1/2

|X′6−1
θ,νX|

−1/2(S2
θ,ν)

−(n−p)/2, (8)

and

S2
θ,ν = (z − Xβ̂θ,ν)

′6−1
θ,ν(z − Xβ̂θ,ν), (9)

β̂θ,ν = (X′6−1
θ,νX)−1X′6−1

θ,νz. (10)

Note that S2
θ,ν , is the generalized residual sum of squares and β̂θ,ν , is the generalized least squares estimator of β

given θ and ν.
Based on the idea of Berger et al. (1998), ν can be estimated by maximizing the marginal density m(z|ν), that is,

ν̂ = arg max
ν

m(z|ν).

Fig. 2 shows the marginal integrated likelihood m(z|ν) for our dataset. It follows that for our model, the most likely
value of ν is 0.13. Thus we will assume ν = 0.13 for the posterior simulation in the next subsection.

3.2. Posterior simulation

Standard Bayesian theory tells us that the posterior distribution is determined by

p(β, σ 2, θ |z) ∝ L(β, σ 2, θ; z)π(β, σ 2, θ) (11)
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Fig. 2. The marginal density m(z|ν) in terms of ν.

where L(β, σ 2, θ; z) is given by (1) and π(β, σ 2, θ) by (3), assuming that the smoothness parameter ν is 0.13. Berger
et al. (2001) also proved that the posterior distribution p(β, σ 2, θ |z) under the reference prior is proper, but did not
provide an efficient algorithm for the posterior simulation. Here we will propose an efficient algorithm for the posterior
simulation based on the generalized Ratio-of-Uniforms method developed by Wakefield et al. (1991). The following
theorem plays an important role in our posterior simulation:

Theorem 1. The joint posterior distribution of β, σ 2, θ has the following decomposition:

p(β, σ 2, θ |z) = p(β|σ 2, θ; z)p(σ 2
|θ; z)p(θ |z), (12)

where

(β|σ 2, θ; z) ∼ Np(β̂θ , σ
2(X′6−1

θ X)−1) (13)

(σ 2
|θ; z) ∼ IG((n − p)/2 + 1, z′

{6−1
θ − 6−1

θ X(X′6−1
θ X)−1X′6−1

θ }z/2), (14)

[θ |z] ∝ L I (θ; z)π(θ), (15)

with L I (θ; z) = L I (θ, ν; z) given by (8) and β̂θ = β̂θ,ν , by (10), assuming the smoothness parameter ν being known.
IG(α1, α2) represents the inverse gamma distribution with shape parameter α1 and scale parameter α2.

Sampling from (13) and (14) is straightforward. We will apply the generalized Ratio-of-Uniforms method proposed
by Wakefield et al. (1991) to sample θ from (15) because it is not of standard form.

In order to apply the generalized Ratio-of-Uniforms method to sample θ from (15), it is important to study
the analytical properties of the function L I (θ; z)π(θ). Fig. 3 shows the plot of the integrated likelihood function
L I (θ; z)π(θ) with ν = 0.13. The following theorem is essential to generate samples from p(θ |z) by the generalized
Ratio-of-Uniforms method.

Theorem 2. For ν 6= 1, there exists a positive number r , such that both [L I (θ; z)π(θ)]1/(r+1) and
θ [L I (θ; z)π(θ)]r/(r+1) are bounded on (0, +∞).

By choosing an appropriate number r , the algorithm of the posterior simulation works as follows (notice that
infθ {θ [L I (θ; z)π(θ)]r/(r+1)

} = 0).

Algorithm for the posterior simulation from p(β, σ 2, θ |z):
Step 1: Compute

a(r) = sup
θ>0

{[L I (θ; z)π(θ)]1/(r+1)
},

b(r) = sup
θ>0

{θ [L I (θ; z)π(θ)]r/(r+1)
}.
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Fig. 3. The plot of L I (θ; z)π(θ) with ν = 0.13.

Step 2: Simulate

U ∼ Uniform [0, a(r)],

V ∼ Uniform [0, b(r)],

and compute ρ = V/U r ;
Step 3: If U ≤ [L I (ρ; z)π(ρ)]1/(r+1), we accept ρ as a sample θ from L I (θ; z)π(θ), otherwise go back to Step 2;
Step 4: For each θ , simulate

σ 2
∼ IG((n − p)/2 + 1, z′

{6−1
θ − 6−1

θ X(X′6−1
θ X)−1X′6−1

θ }z/2);

Step 5: For each (θ, σ 2), simulate

β ∼ Np+1(β̂θ , σ
2(X′6−1

θ X)−1);

Step 6: Go back to Step 2.

As discussed above, an appropriate estimate of ν is 0.13 for our dataset, and thus we may take any r > 0.5747
from Theorem 2. For simplicity, we choose r = 1, which means that the basic Ratio-of-Uniforms method proposed by
Kinderman and Monahan (1977) can be applied. In this case, a(1) = 0.1349 and b(1) = 0.0584. The acceptance area
with the Ratio-of-Uniforms method is shown in Fig. 4 and the theoretical acceptance rate for the simulation is around
76%. In fact, we obtained 10 000 samples by sampling 13 101 pairs of (u, v), which means the actual acceptance
rate is 76.33% in our simulation. The simulation took about 52 min on a 2.20 GHz AMD Athlon XP 3200+ PC. In
addition, notice that our simulation produces independent samples for (β, σ 2, θ), which is advantageous over other
traditional MCMC algorithms when making inference of parameters or prediction.

The acceptance rate of the generalized Ratio-of-Uniforms method depends on the value r chosen. It is unclear
how to get the best choice of r . Our experience shows that a good choice is the integer that is closest to 1/(2|ν − 1|)

and greater than or equal to 1. If the smoothness parameter ν is exactly equal to one, it is still unclear whether the
generalized Ratio-of-Uniforms method can be applied theoretically.

Fig. 5 gives the histogram of θ based on these 10 000 independent samples. We can see that the marginal posterior
density of the range parameter θ is positively skewed and heavy-tailed, which commonly appears in the area of
spatial statistics. This property usually results in difficulties in spatial simulation because it is often difficult to get
samples in the tail. See Banerjee et al. (2004) and Møller (2003) and the references therein. The histograms of σ 2

and β0, β1, β2, β3 are shown in Fig. 6 and Fig. 7, respectively. Table 2 shows some posterior quantities from the
simulation.

From Table 2, we know that both the aspect class and the soil depth are significant, but the land type association
is less significant in the model. Therefore, we consider the new spatial model with two covariates, the aspect class
and the soil depth. Similar simulation shows that the aspect class and the soil depth are still significant in the new
model and thus the new model with the aspect class and the soil depth only is appropriate for further analysis such as
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Fig. 4. The acceptance area with the Ratio-of-Uniforms method.

Fig. 5. Histogram for θ in the model.

Fig. 6. Histogram for σ 2 in the model.
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Fig. 7. Histograms for β0, β1, β2, β3 in the model.

Table 2

Posterior quantities for β = (β0, β1, β2, β3)′, σ 2 and θ

Parameter Mode Median Mean Standard deviation 95% Bayesian credible interval

β0 61.32 61.34 61.40 3.48 [54.91, 68.36]
β1 5.86 5.86 5.84 1.74 [2.44, 9.27]
β2 5.49 5.48 5.47 2.11 [1.40, 9.59]
β3 2.94 2.93 2.73 2.92 [−3.65, 7.93]
σ 2 78.06 79.99 84.88 22.70 [58.34, 135.54]
θ 0.28 0.50 1.20 10.78 [0.12, 5.37]

prediction. For brevity, we just present the histograms of the parameters β1, β2, θ and σ 2 in Fig. 8 based on 10 000
independent posterior samples. Notice that for the new model, the estimated smoothness parameter in Section 3.1
becomes 0.12.

Fig. 8 also tells us that the approximate mode of the marginal posterior density of the range parameter θ is around
0.30, which is smaller than the posterior median 0.49. As discussed in Sun (2006), we may choose the posterior mode
as an appropriate point estimate of the range parameter θ for our model. This implies that the effective range, the
distance at which the correlation drops to only 0.05, is about 460 m, which is a reasonable distance in the MOFEP
study.

In the following sections, we work with the model with the aspect class and the soil depth only because the land
type association is not significant.

4. Model validation

Assessing model adequacy is very important and fundamental in Bayesian data analysis, since the analysis can be
misleading when the model is not adequate. The literature on Bayesian model adequacy is very extensive; for example,
see Box (1980), Geisser (1993), Gelfand et al. (1992), Dey et al. (1997), and many others. When the observations are
independent, the cross-validation approach, in which the predictive distribution is used in various ways to assess model
adequacy, are popularly used. The main idea of this cross-validation approach is to validate conditional predictive
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Fig. 8. Histograms for θ, σ 2, β1, β2 in the new model with two covariates, the aspect class and the soil depth based on 10 000 independent posterior
samples.

distribution arising from single observation deletion against observed responses. In the area of spatial statistics, the
observations measured at different locations are correlated. If the sample size is small, this approach is still applicable,
for example, see De Oliveira et al. (1997). However, this approach is not appropriate for a large spatial dataset because
of very expensive computation. Now we will use some of 60 sampled trees that are not contained in the model for
assessing model adequacy.

From the 60 sampled trees that are not used in building the model, we selected 29 trees, such that the distance
between each of 29 trees and any of 113 trees in the model is at least 20 m. We then obtain the predictive distribution
of the site index at each of 29 locations as follows:

p(z0|z) =

∫
p(z0|z, β, σ 2, θ)p(β, σ 2, θ |z)dβdσ 2dθ (16)

where p(β, σ 2, θ |z) is the posterior distribution described by (11) and p(z0|z, β, σ 2, θ) is determined by

p(z, z0|β, σ 2, θ) ∼ Nn+1

((
Xβ

x′(s0)β

)
, σ 2

(
6θ kθ

k′
θ 1

))
. (17)

Here x(s0) is the covariate vector evaluated at s0 and σ 2kθ is n ×1 vector of covariances of z0 with (z(s1), . . . , z(sn)).
In fact, we have

p(z0|z, β, σ 2, θ) ∼ N (µ0, σ
2
0 ) (18)

where

µ0 = x′(s0)β + k′
θ6

−1
θ (z − Xβ), σ 2

0 = σ 2(1 − k′
θ6

−1
θ kθ ). (19)

Based on the samples generated from the posterior distribution p(β, σ 2, θ |z) in the previous section, we can easily
obtain the samples from the predictive distribution and then calculate 95% Bayesian credible interval for each z0
at location s0. The detailed algorithm will be described in the next section. Of 29 locations for the purpose of
model validation, four observed measurements are outside their corresponding 95% Bayesian credible intervals. If
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Fig. 9. Histogram of z0 sampling from the predictive distribution at (665 614.875, 4115 457.5), covariate information: aspect class — exposed and
soil depth — deep.

we consider 90% Bayesian credible prediction intervals, then only two measurements are outside their corresponding
prediction intervals. In addition, no overprediction or underprediction tendency is noted. So the model in Section 2
with two covariates, the aspect class and the soil depth, seems to perform adequately. We will also justify our model
by discussing the variability of the predictive distribution in the next section.

5. Spatial prediction of the site index

Modelling point-referenced data is not only useful for identifying significant covariates but for producing smooth
maps of the outcome by predicting it at unsampled locations. Spatial prediction is usually refereed as kriging and
popularly used in spatial area. In the classical framework a lot of effort is devoted to the determination of the
optimal estimates to use in the predictive equation. However, as pointed out by Le and Zidek (1992), classical kriging
methodology fails to incorporate parameter uncertainty when performing prediction and inference. This deficiency
leads to unwarranted confidence in the interpolated values and, essentially, to seemingly valid decisions or regulatory
actions which are, in fact, unjustified. Bayesian approaches to spatial interpolation avoid this deficiency by considering
uncertainty about the parameters in the model.

For each unmeasured site s0, we obtain its covariate information from the GIS database provided by the Missouri
Department of Conservation. Given samples from the posterior distribution, simulation of realizations from (16) is
straightforward. In fact, by (16) and (18), we just need to add

Step 5?: for given (β, σ 2, θ), simulate z0 from N (µ0, σ
2
0 ) with µ0, σ 2

0 given by (19);

before Step 6 of the algorithm in Section 3.2 and thus we get independent samples of z0 from the posterior predictive
distribution p(z0|z) in (16).

Fig. 9 shows the histogram of the z0 at (665614.875, 4115457.5), which is located at the centre of Site one. Fig. 10
shows the histograms of the z0 at other four locations, which are near the border of Site one. Each histogram is based
on a sample of size 10 000. In fact, we found that the sample size 300 is sufficient enough to get the approximate
predictive density of z0. Note that each posterior predictive distribution is unimodal and approximately symmetric,
which implies that its mean, median and mode are almost the same. In addition, the variation of each predictive
distribution is relatively small compared to the posterior distribution of the variance σ 2. For example, the standard
deviation of the predictive distribution at (665564.875, 4115337.5) is about 2.76 for our 10 000 samples. This also
gives us much confidence that our proposed model is appropriate.

In order to get a prediction map of the site index, we make a grid of 10 m by 10 m on Site one providing 38 744
unmeasured locations. Figs. 11 and 12 present the covariate information for the aspect class and the soil depth in Site
one, respectively. Based on the prediction procedure described in this section, Fig. 13 shows the prediction map for
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Fig. 10. Histograms of the predictive distribution at four different locations: (a) Location (666 194.875, 4116 397.5), covariate information: aspect
class—exposed and soil depth—deep to very deep; (b) location (666 124.875, 4114 517.5), covariate information: aspect class—exposed and soil
depth—deep to very deep; (c) location (664 474.875, 4115 407.5), covariate information: aspect class—protected and soil depth—shadow to deep;
(d) location (665 564.875, 4115 337.5), covariate information: aspect class—exposed and soil depth—deep to very deep.

Fig. 11. The map of the aspect class in Site one: The white represents the area with protected and the black represents the area with exposed.

Site one. The whole simulation of prediction using the above method took about 75 h on a 3.20 GHz Pentium IV PC.
For convenience, we also provide the map of the variability of the prediction in Fig. 14.
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Fig. 12. The map of the soil depth in Site one: The white represents the soil depth varying from deep to very deep and the black represents the soil
depth varying from shallow to deep.

Fig. 13. The prediction map of the site index in Site one.

6. Concluding remarks and discussions

In this paper we discuss how to model the site index dataset provided by the Missouri Department of Conservation
and then predict the site index at unsampled locations. As an example, we chose black oaks in sites one and two
for analysis. Based on ecological background and availability, we selected three variables, the aspect class, the land
type association and the soil depth as covariates. To allow great flexibility of the smoothness of the random field,
we adopted the Matérn family as the correlation function. We also chose the reference prior as an appropriate prior
because there is no previous knowledge of the parameters in the model and thus an appropriate Bayesian spatial
model is established. An efficient algorithm based on the generalized Ratio-of-Uniforms method is developed for
the posterior simulation. One advantage of the algorithm is that it generates independent samples from the required
posterior distribution, which is much more efficient for both statistical inference of the parameters and prediction of
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Fig. 14. The standard deviation map of the site index prediction at Site one.

the site indexes at unsampled locations. Our results show that the aspect class and the soil depth are both significant
while the land type association is less significant.

One possible extension is to include the nugget effect in the model, but a new efficient algorithm is needed because
there are too many unsampled locations to be predicted. We may also consider develop a multivariate Bayesian spatial
model by considering four species together to enhance the prediction.
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Appendix

Proof of Theorem 1. From (1) and (3), we can easily obtain (13). Since

(z − Xβ)′6−1
θ (z − Xβ) = z′6−1

θ z + (β − β̂θ )
′X′6−1

θ X(β − β̂θ ) − β̂
′

θ X′6−1
θ Xβ̂θ ,

it follows

p(σ 2
|θ; z) =

∫
L(β, σ 2, θ; z)π(β, σ 2, θ)dβ

∝ (σ 2)−n/2−a
∫

exp{−(z − Xβ)′6−1
θ (z − Xβ)/(2σ 2)}dβ

∝ (σ 2)−(n−p)/2−a exp[−z′
{6−1

θ − 6−1
θ X(X′6−1

θ X)−1X′6−1
θ }z/(2σ 2)]

and hence (14). (15) can easily be seen from (8), which completes the proof. �

Proof of Theorem 2. For the Matérn family and the reference prior π(β, σ 2, θ), Lemma 1 in Berger et al. (2001)
showed that L I (θ; z) → c0 as θ → 0+ where c0 is a positive number, L I (θ; z) = O(1) as θ → +∞ and π(θ) → 0+

as θ → 0. Consider three cases in the following:

(i) 0 < ν < 1. Corollary 1 in Berger et al. (2001) stated that

π(θ) ∝
1

θ1+2(1−ν)
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and thus we may take any r > 1/[2(1 − ν)].

(ii) ν is greater than 1 and is non-integer. Similarly, we have

π(θ) ∝
1

θ1+2(ν−1)

and thus we may take any r > 1/[2(ν − 1)].

(iii) ν is greater than 1 but is integer. We have

π(θ) ∝
1 + 2(ν − 1)| log(θ)|

θ1+2(ν−1)

and thus we may still take r > 1/[2(ν − 1)]. Thus the theorem follows.
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